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Temperature and the Critical Dimension of Strings 

E.  A h m e d  ~ 

Received July 21, 1987 

Thermofield dynamics  is used to generalize the BRST invariance of strings to 
nonzero temperature. The requirement that the BRST generator is nilpotent 
implies that d = 26 even at nonzero temperature. 

1. INTRODUCTION 

String theory is the best candidate for unifying the known forces. Since 
its role becomes significant at high temperature, the study of finite- 
temperature string theory is of great importance. One property of strings is 
the existence of a critical dimension of space-time at which the Lorentz 
algebra closes in the light cone gauge (Schwarz, 1982), the conformal 
anomaly cancels (Friedan et al. 1986), and the BRST charge is nilpotent 
(Kato and Ogawa, 1983). 

The question in which we are interested is: Can temperature affect the 
critical dimension of strings? This question is important for the compac- 
tification of strings, as we discuss in Section 5. To answer this question one 
has to generalize the BRST symmetry or equivalently the conformal sym- 
metry to finite temperature. BRST invariance at finite temperature for gauge 
theory has been studied (Ojima, 1981; Matsumoto et aL 1983), using 
thermofield dynamics (TFD) (Takahashi and Umezawa, 1975). Recently 
TFD has been applied to strings (Ahmed et al., 1987) and introduced in 
superstrings (Ahmed, 1987). 

Section 2 gives a brief review of BRST symmetry of strings. Section 3 
presents the basic formalism of TFD and its application in gauge theory. 
In Section 4 TFD is applied in strings to derive the critical dimension of 
strings at finite temperature. Section 5 presents our conclusions. 
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2. STRING BRST S Y M M E T R Y  AT T = 0  

The closed bosonic string is described by the action 

S=-f-~ do'dr (_g)~/2g~r O~X ~ Or (2.1) 

After fixing the 2D reparametrization invariance one gets 

X'* = ( X ~ ( r -  ~r) + X ~ ( r  + cr) 

X ~ = x ' + � 8 9 1 7 6  + i  E 1 . e_,.(~+~ ~ 
2 . ~ o n  a" 

[ a ; ,  aZ] = n 6,+m,071 ~ (2.2) 
We also obtain the set of constraints 

L.=�89 ~ a~_,,a~ (2.3) 
m - - - - c o  

Following the usual Fadeev-Popov procedure, we introduce the ghosts Cn, 
Cm, which satisfy 

{G, cm}={c., cm} =0 

{c~ Cm} = a~ 

c*.=c_., - *  C.=C_. 
The BRST charge QB is given by 

QB = E C ,L_ , - � 89  
n = - - o o  m , n  = - - o a  

The ghost charge is 

They satisfy: 

and 

which is satisfied only if 

Conditions 
condition: 

( m - n )  :C_,C_mC,+m: -aCo 

iQc =�89 CoCo)+ E :C_,C,: 
n O 0  

[ iQc, QB ] = QB 

O~ =�89 O.} = o 

d = 26, 

(2.7) and (2.8) are crucial 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

a = 1 (2.9) 

for the physical state subsidiary 

QBlphys) = 0 (2.10) 
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3. T H E R M O F I E L D  D Y N A M I C S  

The basic idea of TFD is to express the statistical average of any 
operator A as a vacuum expectation value with the temperature-dependent 
vacuum [0(/3)), 

t r ( e - ~ H A ) / t r ( e  -t3H) = (0(/3)1A10(/3)) (3.1) 

This requires a doubling of the field degrees of freedom. This is achieved 
by defining for every field operator ~r a tilde conjugate M such that 

( ~ 1 ~ 2 )  ~--- ~ 1 , ~ 2  

()ta s~a + h 22/:) = A* ~/a + A* ~/2 (3.2) 

M = +,if, + ( - )  for bosons (fermions) 

For every field ~ one now has a doublet 4~ ~, a = 1, 2, defined by 

where O is a spinor field, t denotes the transpose, q~ = 0+7 ~ and C is the 
charge conjugation. The total Lagrangian is given by 

2 
c 2 = ~?_ c~ = 2 e , ~  (3.4) 

where 

11 o~=1 
- ~ = 2  

~ = p~Le(, / , ,  4,) 

f A I B  ~ �9 �9 �9 C 1 a = 1 
p , ( A " B ~  . . . 

C ~ ) = - ( C 2 " "  B 2 A  2 c~=2 

The thermal fields r and q,~ are introduced by the Bogoliubov transfor- 
mation 

Oh(x) = [ U s ( - i  O/Ot)]~v6~(x ) 

O " ( x )  = [ U v ( - i  O/Ot) ]"vds~(x) (3.5) 

where 

UB(w)  = ( e ~  _ l ) l / 2 [ e ~ / 2  e~lo/21 

UF(w)= (ee~ e~l/21 (3.6) 
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The coefficients of the normal mode expansion of these thermal fields are 
the creation and annihilation operators of the thermal vacuum 10(/3)). 

We apply TFD to the gauge theory described by the action 

f d x  [ - � 8 8  ~ -  a , a , a a S A,a B +~B B ] (3.7) 

where C and C are Fadeev-Popov ghost fields, B is a Lagrange multiplier, 
and 

a a a . , " a b c - - b  ~ c  F~, ,  = OvA  ,, - 3 . A ~  - tgJ ~ . a , ,  

( D ~ C ) a  = O , C  a _ . ,-,bc--b ~ c  

The thermal Lagrangian ~ is given by 

~ = ~ - ~  

- A . a  B +~B B (3.8) - -  4 - - , ~  v -* tz v 

It has been shown that the ghost fields behave like bosons under Bogoliubov 
transformations. 

The finite-temperature ghost and BRST charges are 

(~c = i f d~ -1 [Ca(DoC)a - (0oC)C a ] - t i lde conjugate (3.9) 

() .  = f d D - '  [ B " ( W o C ) "  - (OoB'~)C ~ + � 8 9  ~] 

- t i lde conjugate (3.10) 

They satisfy 

0 2 = 0  (3.11) 

[iQ~, QB] = (~B (3.12) 

Equations (3.11) and (3.12) ensure that the quartet mechanism is valid at 
T # 0; consequently, the physical state subsidiary condition is 

(~B IPhys) = 0 (3.13) 

4. S T R I N G S  AT FINITE T E M P E R A T U R E  

Now we can formulate the BRST symmetry of string theory at finite 
temperature. The thermal action is given by 

S =-127r f d tyd ' r  [ ( _ _ g ) l / 2 g a [ 3  a a X t ~  a f l X p ,  - - ( _ ~ ) 1 / 2 ~ o ~  ac~/x a/3.d~/x ] (4.1) 
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where . ~  is the tilde conjugate of X~,. Notice that the 2D tilde metric ~ 
in general has to be different from g~ .  This can be seen by realizing that 
in TFD each L# and 5~ has its own gauge invariance. Furthermore, one of 
the known choices of the metric g,~ is 

g,~ = O~,X~O~X~ # 0~X~0t3)~ = g~I3 (4.2) 

If  one uses the light cone gauge, then (4.1) reduces to the known thermal 
action in the light cone. In this paper we use the covariant formulation of 
strings. 

Varying the action (4.1) with respect to g ~  and g~t3 gives the constraints 

=0, Lm =0 

f~m= 1 ~ a,~_,a,  "~" "~ (4.3) 

where ~ are the normal mode coefficients of ) ~ .  
Introducing Fadeev-Popov ghosts for both types of the constraints 

(4.3), we derive the thermal ghost number charge i(~c and BRST charge (~B: 

i(~c = iQ~- i(~ 

oo 

= (CoCo-CoCo)-  E (d_.d.-d_.d.) 
n = l  

{C,, C,,} =-~,+m,o (4.4) 

(~B = Q .  - (~B (4.5) 

n ,  t t l  = - - o o  

[i(~r (~s] =-(~B (4.6) 

{Qs, (~,} = 0 (4.7) 

It is easy to check that 

[iQ~, Qs] = (~n (4.8) 

The requirement that the BRST charge is nilpotent, 0 2 = 0, and the relation 
(4.7) imply 

Q2 =0r Q~ = 0, O ~ = 0  (4.9) 

which is satisfied only if 

d = 26, re = 1 (4.10) 

Therefore we conclude that temperature will not affect the space-time 
dimension of strings. 
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From the relations (4.8) and (4.9) we deduce that the physical state 
subsidary condition at finite temperature for strings is 

OBlphys) = 0 (4.11) 

5. C O N C L U S I O N S  

Thermofield dynamics has been used to investigate the BRST symmetry 
of strings at finite temperature.  The nilpotency of the BRST charge implies 
that temperature will not affect the critical dimension of strings. We antici- 
pate that this result will be true for superstrings as well. The results presented 
here should be of basic importance to the problem of  compactification of  
strings and superstrings because some of the compactification manifolds, 
e.g., Calabi -Yau manifolds (Green et aL, 1987), are defined only in d c r i t i c a l  - 4 
dimensions. We expect that temperature will not spoil the results obtained 
there. 
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